Consumer and Producer Surplus at Equilibrium

by Electra Radioti
Consumer and Producer Surplus at Equilibrium

 

Consumer and Producer Surplus at Equilibrium

The following demand and supply functions are given:

  • Demand function (price as a function of quantity):

    Pd=300−20Q−Q2P_d = 300 – 20Q – Q^2

  • Supply function:

    Ps=20+7QP_s = 20 + 7Q


Questions

(a) Determine the domain of the demand function given that it is decreasing. Then find the equilibrium price and quantity.
(b) Calculate the consumer surplus at equilibrium.
(c) Calculate the producer surplus at equilibrium.


Solutions

(a) Domain and Equilibrium

Step 1: Domain of the Demand Function

Given:

Pd=300−20Q−Q2P_d = 300 – 20Q – Q^2

This is a quadratic function opening downward (because the coefficient of Q2Q^2 is negative). The function is decreasing as long as we stay to the left of the vertex.

The vertex of a quadratic ax2+bx+cax^2 + bx + c occurs at:

Q=−b2a=−−202(−1)=20−2=−10Q = -\frac{b}{2a} = -\frac{-20}{2(-1)} = \frac{20}{-2} = -10

But this is not valid, because negative quantities make no economic sense here. Since we want the decreasing part, we only consider values before the vertex, so for:

Q∈[0,10]Q \in [0, 10]


Step 2: Find Equilibrium

Set Pd=PsP_d = P_s:

300−20Q−Q2=20+7Q300 – 20Q – Q^2 = 20 + 7Q

Move all terms to one side:

300−20Q−Q2−20−7Q=0⇒−Q2−27Q+280=0300 – 20Q – Q^2 – 20 – 7Q = 0 \Rightarrow -Q^2 – 27Q + 280 = 0

Multiply through by -1:

Q2+27Q−280=0Q^2 + 27Q – 280 = 0

Solve using the quadratic formula:

Q=−27±272+4â‹…2802=−27±729+11202=−27±18492=−27±432Q = \frac{-27 \pm \sqrt{27^2 + 4 \cdot 280}}{2} = \frac{-27 \pm \sqrt{729 + 1120}}{2} = \frac{-27 \pm \sqrt{1849}}{2} = \frac{-27 \pm 43}{2} Q1=−27+432=8(valid)Q2=−27−432=−35(not valid)Q_1 = \frac{-27 + 43}{2} = 8 \quad \text{(valid)} \quad Q_2 = \frac{-27 – 43}{2} = -35 \quad \text{(not valid)}

So, equilibrium quantity is Q=8Q = 8

Substitute into either function to find price:

P=20+7(8)=20+56=76P = 20 + 7(8) = 20 + 56 = 76

Or:

P=300−20(8)−82=300−160−64=76P = 300 – 20(8) – 8^2 = 300 – 160 – 64 = 76

✅ Equilibrium is at Q=8Q = 8, P=76P = 76


(b) Consumer Surplus

Consumer surplus is the area between the demand curve and the price, up to the equilibrium quantity.

Use the integral of the demand function from 00 to Q∗=8Q^* = 8, minus the rectangle P⋅QP \cdot Q:

CS=∫08(300−20Q−Q2) dQ−76â‹…8CS = \int_0^8 (300 – 20Q – Q^2) \, dQ – 76 \cdot 8

Integrate:

∫08(300−20Q−Q2) dQ=[300Q−10Q2−13Q3]08\int_0^8 (300 – 20Q – Q^2) \, dQ = \left[300Q – 10Q^2 – \frac{1}{3}Q^3\right]_0^8

Substitute Q=8Q = 8:

=300(8)−10(64)−13(512)=2400−640−5123=1760−5123=5280−5123=47683≈1589.33= 300(8) – 10(64) – \frac{1}{3}(512) = 2400 – 640 – \frac{512}{3} = 1760 – \frac{512}{3} = \frac{5280 – 512}{3} = \frac{4768}{3} \approx 1589.33

Rectangle area (expenditure):

76â‹…8=60876 \cdot 8 = 608

So:

CS=1589.33−608=981.33CS = 1589.33 – 608 = 981.33

✅ Consumer Surplus ≈ 981.33


(c) Producer Surplus

Producer surplus is the area between the price and the supply curve, up to the equilibrium quantity:

PS=76â‹…8−∫08(20+7Q) dQPS = 76 \cdot 8 – \int_0^8 (20 + 7Q) \, dQ

Calculate the integral:

∫08(20+7Q) dQ=[20Q+72Q2]08=20(8)+72(64)=160+224=384\int_0^8 (20 + 7Q) \, dQ = \left[20Q + \frac{7}{2}Q^2\right]_0^8 = 20(8) + \frac{7}{2}(64) = 160 + 224 = 384

Rectangle area:

76â‹…8=60876 \cdot 8 = 608

So:

PS=608−384=224PS = 608 – 384 = 224

✅ Producer Surplus = 224


Final Answers

  • Equilibrium: Q=8Q = 8, P=76P = 76
  • Consumer Surplus: ≈ 981.33
  • Producer Surplus: 224

 

Related Posts

Leave a Comment