Understanding Continuity, Derivatives, and Function Composition: Step-by-Step Solutions

by Electra Radioti
Understanding Continuity, Derivatives, and Function Composition

 

Exercise Set

(a) Find the values of aa for which the function is continuous at all points in its domain:

f(x)={x24x+3,x<5ax+1,x5f(x) = \begin{cases} x^2 – 4x + 3, & x < 5 \\ ax + 1, & x \geq 5 \end{cases}

(b) Compute the derivative of the function:

f(x)=(5ex2x3)4f(x) = (5e^x – 2x^3)^4

(c) Determine the range of the following functions, assuming their domain is all R\mathbb{R}:

  1. f(x)=3x2+6x+9f(x) = -3x^2 + 6x + 9
  2. g(x)=ex+4g(x) = e^{-x} + 4

(d) Given the functions f(x)=3x2f(x) = 3x – 2 and g(x)=x2+5g(x) = x^2 + 5, determine f(g(x))f(g(x)).


Step-by-Step Solutions

(a) Ensuring Continuity

A function is continuous at a point x=cx = c if:

  1. limxcf(x)=limxc+f(x)\lim\limits_{x \to c^-} f(x) = \lim\limits_{x \to c^+} f(x) (Left-hand limit equals right-hand limit)
  2. The common limit equals f(c)f(c).

Here, continuity at x=5x = 5 means:

limx5f(x)=limx5+f(x)=f(5)\lim\limits_{x \to 5^-} f(x) = \lim\limits_{x \to 5^+} f(x) = f(5)

Step 1: Compute limx5f(x)\lim\limits_{x \to 5^-} f(x) (using x24x+3x^2 – 4x + 3)

Substituting x=5x = 5:

524(5)+3=2520+3=85^2 – 4(5) + 3 = 25 – 20 + 3 = 8

Step 2: Compute limx5+f(x)\lim\limits_{x \to 5^+} f(x) (using ax+1ax + 1)

Substituting x=5x = 5:

a(5)+1=5a+1a(5) + 1 = 5a + 1

For continuity:

8=5a+18 = 5a + 1

Solving for aa:

5a=7a=755a = 7 \quad \Rightarrow \quad a = \frac{7}{5}

(b) Computing the Derivative

The function:

f(x)=(5ex2x3)4f(x) = (5e^x – 2x^3)^4

We apply the chain rule, which states:

ddx[g(h(x))]=g(h(x))h(x)\frac{d}{dx} [g(h(x))] = g'(h(x)) \cdot h'(x)

Let u=5ex2x3u = 5e^x – 2x^3, so:

f(x)=u4f(x) = u^4

Using the chain rule:

f(x)=4u3uf'(x) = 4u^3 \cdot u’

Differentiate uu:

u=5ex6x2u’ = 5e^x – 6x^2

Thus:

f(x)=4(5ex2x3)3(5ex6x2)f'(x) = 4(5e^x – 2x^3)^3 \cdot (5e^x – 6x^2)

(c) Finding the Range

(i) f(x)=3x2+6x+9f(x) = -3x^2 + 6x + 9

This is a quadratic function of the form ax2+bx+cax^2 + bx + c. Since a=3a = -3 (negative), the parabola opens downward, meaning it has a maximum value at its vertex.

The vertex occurs at:

x=b2a=62(3)=66=1x = \frac{-b}{2a} = \frac{-6}{2(-3)} = \frac{6}{6} = 1

Substituting x=1x = 1:

f(1)=3(1)2+6(1)+9=3+6+9=12f(1) = -3(1)^2 + 6(1) + 9 = -3 + 6 + 9 = 12

Since the parabola extends to -\infty, the range is:

(,12](-\infty, 12]

(ii) g(x)=ex+4g(x) = e^{-x} + 4

Since exe^{-x} is always positive and approaches 0 as xx \to \infty, its minimum value occurs at:

limxex+4=0+4=4\lim\limits_{x \to \infty} e^{-x} + 4 = 0 + 4 = 4

Its maximum occurs at xx \to -\infty, where exe^{-x} \to \infty, so:

limxex+4=+4=\lim\limits_{x \to -\infty} e^{-x} + 4 = \infty + 4 = \infty

Thus, the range is:

(4,)(4, \infty)

(d) Function Composition: f(g(x))f(g(x))

We substitute g(x)g(x) into f(x)f(x):

Given:

f(x)=3x2,g(x)=x2+5f(x) = 3x – 2, \quad g(x) = x^2 + 5 f(g(x))=3(x2+5)2f(g(x)) = 3(x^2 + 5) – 2

Expanding:

f(g(x))=3x2+152=3x2+13f(g(x)) = 3x^2 + 15 – 2 = 3x^2 + 13

Thus, the composed function is:

f(g(x))=3x2+13f(g(x)) = 3x^2 + 13


Final Answers Summary

  1. Continuity Condition: a=75a = \frac{7}{5}
  2. Derivative: f(x)=4(5ex2x3)3(5ex6x2)f'(x) = 4(5e^x – 2x^3)^3 \cdot (5e^x – 6x^2)
  3. Ranges:
    • (,12](-\infty, 12] for f(x)=3x2+6x+9f(x) = -3x^2 + 6x + 9
    • (4,)(4, \infty) for g(x)=ex+4g(x) = e^{-x} + 4
  4. Composition: f(g(x))=3x2+13f(g(x)) = 3x^2 + 13

Conclusion

This step-by-step approach ensures a clear understanding of continuity, differentiation, function range, and composition. These fundamental topics build the foundation for more advanced calculus applications. Keep practicing, and calculus will soon feel intuitive! 🚀

Related Posts

Leave a Comment