Matrix Operations Exercise

by Electra Radioti
Matrix Operations Exercise

 


Matrix Operations Exercise

The following matrices are given:

A=[312405],B=[1332],C=[3212],D=[231140154]A = \begin{bmatrix} 3 & -1 \\ -2 & 4 \\ 0 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 3 \\ 3 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} -3 & -2 \\ 1 & 2 \end{bmatrix}, \quad D = \begin{bmatrix} 2 & -3 & 1 \\ 1 & 4 & 0 \\ -1 & 5 & -4 \end{bmatrix}


Questions

(a) Perform the following operations where possible:

(i) A2BA – 2B

(ii) 4B3C4B – 3C

(iii) ACTAC^T

(iv) BABA


(b) Calculate the determinant of matrix DD and explain whether the matrix is invertible.


Solutions

(a) Matrix operations

(i) A2BA – 2B

First, compute 2B2B:

2B=2×[1332]=[2664]2B = 2 \times \begin{bmatrix} -1 & 3 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 6 \\ 6 & 4 \end{bmatrix}

Matrix AA is 3×23 \times 2, 2B2B is 2×22 \times 2.
🚫 Operation not possible (cannot subtract matrices of different dimensions).


(ii) 4B3C4B – 3C

First, compute 4B4B:

4B=4×[1332]=[412128]4B = 4 \times \begin{bmatrix} -1 & 3 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} -4 & 12 \\ 12 & 8 \end{bmatrix}

Compute 3C3C:

3C=3×[3212]=[9636]3C = 3 \times \begin{bmatrix} -3 & -2 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} -9 & -6 \\ 3 & 6 \end{bmatrix}

Now subtract:

4B3C=[412128][9636]=[51892]4B – 3C = \begin{bmatrix} -4 & 12 \\ 12 & 8 \end{bmatrix} – \begin{bmatrix} -9 & -6 \\ 3 & 6 \end{bmatrix} = \begin{bmatrix} 5 & 18 \\ 9 & 2 \end{bmatrix}

Answer:

4B3C=[51892]4B – 3C = \begin{bmatrix} 5 & 18 \\ 9 & 2 \end{bmatrix}


(iii) ACTAC^T

First, compute CTC^T:

CT=[3122]C^T = \begin{bmatrix} -3 & 1 \\ -2 & 2 \end{bmatrix}

Now multiply AA (3×2) by CTC^T (2×2):

ACT=[312405]×[3122]AC^T = \begin{bmatrix} 3 & -1 \\ -2 & 4 \\ 0 & 5 \end{bmatrix} \times \begin{bmatrix} -3 & 1 \\ -2 & 2 \end{bmatrix}

Multiply:

First row:

(3)(3)+(1)(2)=9+2=7(3)(-3) + (-1)(-2) = -9 + 2 = -7 (3)(1)+(1)(2)=32=1(3)(1) + (-1)(2) = 3 – 2 = 1

Second row:

(2)(3)+(4)(2)=68=2(-2)(-3) + (4)(-2) = 6 – 8 = -2 (2)(1)+(4)(2)=2+8=6(-2)(1) + (4)(2) = -2 + 8 = 6

Third row:

(0)(3)+(5)(2)=010=10(0)(-3) + (5)(-2) = 0 – 10 = -10 (0)(1)+(5)(2)=0+10=10(0)(1) + (5)(2) = 0 + 10 = 10

So:

ACT=[71261010]AC^T = \begin{bmatrix} -7 & 1 \\ -2 & 6 \\ -10 & 10 \end{bmatrix}

Answer:

ACT=[71261010]AC^T = \begin{bmatrix} -7 & 1 \\ -2 & 6 \\ -10 & 10 \end{bmatrix}


(iv) BABA

Matrix BB is 2×22 \times 2, matrix AA is 3×23 \times 2.

🚫 Operation not possible (inner dimensions do not match: 2×22 \times \underline{2} and 3×2\underline{3} \times 2).


(b) Determinant of matrix DD

Matrix DD:

D=[231140154]D = \begin{bmatrix} 2 & -3 & 1 \\ 1 & 4 & 0 \\ -1 & 5 & -4 \end{bmatrix}

Use cofactor expansion (along the first row):

det(D)=2det[4054](3)det[1014]+1det[1415]\det(D) = 2 \cdot \det \begin{bmatrix} 4 & 0 \\ 5 & -4 \end{bmatrix} – (-3) \cdot \det \begin{bmatrix} 1 & 0 \\ -1 & -4 \end{bmatrix} + 1 \cdot \det \begin{bmatrix} 1 & 4 \\ -1 & 5 \end{bmatrix}

Calculate minors:

det[4054]=(4)(4)(0)(5)=16\det \begin{bmatrix} 4 & 0 \\ 5 & -4 \end{bmatrix} = (4)(-4) – (0)(5) = -16 det[1014]=(1)(4)(0)(1)=4\det \begin{bmatrix} 1 & 0 \\ -1 & -4 \end{bmatrix} = (1)(-4) – (0)(-1) = -4 det[1415]=(1)(5)(4)(1)=5+4=9\det \begin{bmatrix} 1 & 4 \\ -1 & 5 \end{bmatrix} = (1)(5) – (4)(-1) = 5 + 4 = 9

Now compute:

det(D)=2(16)+3(4)+1(9)=3212+9=35\det(D) = 2(-16) + 3(-4) + 1(9) = -32 -12 + 9 = -35

Answer:

det(D)=35\det(D) = -35

Since det(D)0\det(D) \neq 0, matrix DD is invertible.


Final Answers

  • (a):
    • (i) A2BA – 2B: Not possible
    • (ii) 4B3C=[51892]4B – 3C = \begin{bmatrix} 5 & 18 \\ 9 & 2 \end{bmatrix}
    • (iii) ACT=[71261010]AC^T = \begin{bmatrix} -7 & 1 \\ -2 & 6 \\ -10 & 10 \end{bmatrix}
    • (iv) BABA: Not possible
  • (b):
    • det(D)=35\det(D) = -35, so matrix DD is invertible.

 

Related Posts

Leave a Comment