Monopoly Cost, Revenue, and Profit – Exercise

by Electra Radioti
Monopoly Cost, Revenue, and Profit

 

Monopoly Cost, Revenue, and Profit

A monopolistic firm faces the following marginal revenue function:

MR(Q)=−10+7QMR(Q) = -10 + 7Q

and the marginal cost function:

MC(Q)=20−14Q+3Q2MC(Q) = 20 – 14Q + 3Q^2

The firm has a fixed operating cost of 100 currency units and receives a government subsidy of 140 currency units (independent of production). The firm has no other revenue or costs beyond the sale of its product.


Questions

(a) Determine the total cost function TC(Q)TC(Q) and the average cost function AC(Q)AC(Q).
(b) Determine the total revenue function TR(Q)TR(Q).
(c) Determine the total profit function Π(Q)\Pi(Q).
(d) Find the quantity of output QQ that maximizes the firm’s profit.


Solutions

(a) Total Cost and Average Cost

We are given the marginal cost function:

MC(Q)=20−14Q+3Q2MC(Q) = 20 – 14Q + 3Q^2

To find the total cost function, integrate MC(Q)MC(Q) with respect to QQ:

TC(Q)=∫MC(Q) dQ=∫(20−14Q+3Q2) dQTC(Q) = \int MC(Q) \, dQ = \int (20 – 14Q + 3Q^2) \, dQ TC(Q)=20Q−7Q2+Q3+CTC(Q) = 20Q – 7Q^2 + Q^3 + C

The fixed cost is 100 and the firm receives a subsidy of 140. That gives a net fixed cost of:

C=100−140=−40C = 100 – 140 = -40

So the total cost function is:

TC(Q)=Q3−7Q2+20Q−40TC(Q) = Q^3 – 7Q^2 + 20Q – 40

The average cost function is:

AC(Q)=TC(Q)Q=Q2−7Q+20−40QAC(Q) = \frac{TC(Q)}{Q} = Q^2 – 7Q + 20 – \frac{40}{Q}


(b) Total Revenue

We are given the marginal revenue function:

MR(Q)=−10+7QMR(Q) = -10 + 7Q

Integrate to get total revenue:

TR(Q)=∫MR(Q) dQ=∫(−10+7Q) dQ=−10Q+72Q2+CTR(Q) = \int MR(Q) \, dQ = \int (-10 + 7Q) \, dQ = -10Q + \frac{7}{2}Q^2 + C

Since revenue is zero when Q=0Q = 0, C=0C = 0. So:

TR(Q)=−10Q+72Q2TR(Q) = -10Q + \frac{7}{2}Q^2


(c) Total Profit Function

Profit is revenue minus cost:

Π(Q)=TR(Q)−TC(Q)\Pi(Q) = TR(Q) – TC(Q) Π(Q)=(−10Q+72Q2)−(Q3−7Q2+20Q−40)\Pi(Q) = \left(-10Q + \frac{7}{2}Q^2\right) – \left(Q^3 – 7Q^2 + 20Q – 40\right)

Simplify:

Π(Q)=−10Q+72Q2−Q3+7Q2−20Q+40\Pi(Q) = -10Q + \frac{7}{2}Q^2 – Q^3 + 7Q^2 – 20Q + 40 Π(Q)=−Q3+(72+7)Q2−30Q+40\Pi(Q) = -Q^3 + \left(\frac{7}{2} + 7\right)Q^2 – 30Q + 40 Π(Q)=−Q3+212Q2−30Q+40\Pi(Q) = -Q^3 + \frac{21}{2}Q^2 – 30Q + 40


(d) Profit Maximization

To find the quantity that maximizes profit, take the derivative of the profit function and set it to 0:

dΠdQ=−3Q2+422Q−30=−3Q2+21Q−30\frac{d\Pi}{dQ} = -3Q^2 + \frac{42}{2}Q – 30 = -3Q^2 + 21Q – 30

Solve:

−3Q2+21Q−30=0-3Q^2 + 21Q – 30 = 0

Divide through by -3:

Q2−7Q+10=0Q^2 – 7Q + 10 = 0 Q=7±(−7)2−4(1)(10)2(1)=7±49−402=7±32Q = \frac{7 \pm \sqrt{(-7)^2 – 4(1)(10)}}{2(1)} = \frac{7 \pm \sqrt{49 – 40}}{2} = \frac{7 \pm 3}{2} Q=5orQ=2Q = 5 \quad \text{or} \quad Q = 2

To determine which gives a maximum, evaluate the second derivative:

d2ΠdQ2=−6Q+21\frac{d^2\Pi}{dQ^2} = -6Q + 21

  • At Q=2Q = 2: −6(2)+21=9>0-6(2) + 21 = 9 > 0 → local minimum
  • At Q=5Q = 5: −6(5)+21=−9<0-6(5) + 21 = -9 < 0 → local maximum

✅ The firm maximizes profit at Q=5Q = 5 units of output.


Summary

  • Total Cost: TC(Q)=Q3−7Q2+20Q−40TC(Q) = Q^3 – 7Q^2 + 20Q – 40
  • Average Cost: AC(Q)=Q2−7Q+20−40QAC(Q) = Q^2 – 7Q + 20 – \frac{40}{Q}
  • Total Revenue: TR(Q)=−10Q+72Q2TR(Q) = -10Q + \frac{7}{2}Q^2
  • Profit: Π(Q)=−Q3+212Q2−30Q+40\Pi(Q) = -Q^3 + \frac{21}{2}Q^2 – 30Q + 40
  • Maximum profit is achieved when Q=5Q = 5

 

Related Posts

Leave a Comment