Linear Systems Exercise

by Electra Radioti
Linear Systems Exercise

 

Linear Systems Exercise

(a) Solve the following system of equations:

{−x+2y=62x+y=8\begin{cases} -x + 2y = 6 \\ 2x + y = 8 \end{cases}


(b) Consider the following system of equations:

{2x1−x2+3x3=19−4x1+x2+2x3=−123x1−2x2−5x3=1\begin{cases} 2x_1 – x_2 + 3x_3 = 19 \\ -4x_1 + x_2 + 2x_3 = -12 \\ 3x_1 – 2x_2 – 5x_3 = 1 \end{cases}

Use the Gaussian elimination method to determine its solutions, if they exist.


Solutions

(a) Solve the 2×2 system

We have:

−x+2y=6(1)-x + 2y = 6 \tag{1} 2x+y=8(2)2x + y = 8 \tag{2}

Step 1: Express xx in terms of yy from equation (1):

−x+2y=6⇒x=2y−6-x + 2y = 6 \Rightarrow x = 2y – 6

Step 2: Substitute into equation (2):

2(2y−6)+y=82(2y – 6) + y = 8 4y−12+y=84y – 12 + y = 8 5y=205y = 20 y=4y = 4

Step 3: Substitute back to find xx:

x=2(4)−6=8−6=2x = 2(4) – 6 = 8 – 6 = 2

✅ Solution: (x,y)=(2,4)(x, y) = (2, 4)


(b) Gaussian elimination

The system:

{2x1−x2+3x3=19−4x1+x2+2x3=−123x1−2x2−5x3=1\begin{cases} 2x_1 – x_2 + 3x_3 = 19 \\ -4x_1 + x_2 + 2x_3 = -12 \\ 3x_1 – 2x_2 – 5x_3 = 1 \end{cases}

Write the augmented matrix:

[2−13∣19−412∣−123−2−5∣1]\begin{bmatrix} 2 & -1 & 3 & | & 19 \\ -4 & 1 & 2 & | & -12 \\ 3 & -2 & -5 & | & 1 \end{bmatrix}

Step 1: Make first pivot = 1 (Row 1 ÷ 2):

[1−0.51.5∣9.5−412∣−123−2−5∣1]\begin{bmatrix} 1 & -0.5 & 1.5 & | & 9.5 \\ -4 & 1 & 2 & | & -12 \\ 3 & -2 & -5 & | & 1 \end{bmatrix}

Step 2: Eliminate below pivot

  • Row 2: R2+4×R1R_2 + 4 \times R_1
  • Row 3: R3−3×R1R_3 – 3 \times R_1

Result:

[1−0.51.5∣9.50−18∣260−0.5−9.5∣−27.5]\begin{bmatrix} 1 & -0.5 & 1.5 & | & 9.5 \\ 0 & -1 & 8 & | & 26 \\ 0 & -0.5 & -9.5 & | & -27.5 \end{bmatrix}

Step 3: Make second pivot = 1 (Row 2 ÷ -1):

[1−0.51.5∣9.501−8∣−260−0.5−9.5∣−27.5]\begin{bmatrix} 1 & -0.5 & 1.5 & | & 9.5 \\ 0 & 1 & -8 & | & -26 \\ 0 & -0.5 & -9.5 & | & -27.5 \end{bmatrix}

Step 4: Eliminate below pivot

  • Row 3: R3+0.5×R2R_3 + 0.5 \times R_2

Result:

[1−0.51.5∣9.501−8∣−2600−13.5∣−40.5]\begin{bmatrix} 1 & -0.5 & 1.5 & | & 9.5 \\ 0 & 1 & -8 & | & -26 \\ 0 & 0 & -13.5 & | & -40.5 \end{bmatrix}

Step 5: Back substitution

From Row 3:

−13.5x3=−40.5⇒x3=−40.5−13.5=3-13.5x_3 = -40.5 \Rightarrow x_3 = \frac{-40.5}{-13.5} = 3

From Row 2:

x2−8x3=−26⇒x2=−26+8×3=−2x_2 – 8x_3 = -26 \Rightarrow x_2 = -26 + 8 \times 3 = -2

From Row 1:

x1−0.5x2+1.5x3=9.5x_1 – 0.5x_2 + 1.5x_3 = 9.5 x1−0.5(−2)+1.5(3)=9.5x_1 – 0.5(-2) + 1.5(3) = 9.5 x1+1+4.5=9.5x_1 + 1 + 4.5 = 9.5 x1=9.5−5.5=4x_1 = 9.5 – 5.5 = 4

✅ Solution: (x1,x2,x3)=(4,−2,3)(x_1, x_2, x_3) = (4, -2, 3)


Final Answers

  • (a) Solution: x=2x = 2, y=4y = 4
  • (b) Solution: x1=4x_1 = 4, x2=−2x_2 = -2, x3=3x_3 = 3

 

Related Posts

Leave a Comment