Mastering Discrete Probability: A Step-by-Step Exercise with Solutions

by Electra Radioti
Discrete Probability

Exercise

A discrete random variable \( X \) has the following probability distribution:

\[
\begin{array}{|c|c|c|c|c|}
\hline
x & 2 & 4 & 6 & 10 \\
\hline
p(x) & \frac{1}{6} & \frac{1}{3} & \frac{1}{3} & \frac{1}{6} \\
\hline
\end{array}
\]

Answer the following questions:

1. Calculate the probability \( P(4 \leq X < 10) \).
2. Calculate the mean (expected value) and variance of the random variable \( X \).
3. Calculate \( E\left((X – 3)^2\right) \).

Solution

Question 1: Calculate the probability \( P(4 \leq X < 10) \).

We need to find the probability that \( X \) takes values in the range \( 4 \leq X < 10 \).

\[
P(4 \leq X < 10) = P(X = 4) + P(X = 6)
\]

Substituting the given probabilities:

\[
P(4 \leq X < 10) = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}
\]

So, \( P(4 \leq X < 10) = \frac{2}{3} \).

Question 2: Calculate the mean (expected value) and variance of the random variable \( X \).

The expected value \( E(X) \) is calculated as:

\[
E(X) = \sum_{i} x_i \cdot p(x_i)
\]

Substituting the values:

\[
E(X) = 2 \cdot \frac{1}{6} + 4 \cdot \frac{1}{3} + 6 \cdot \frac{1}{3} + 10 \cdot \frac{1}{6}
\]

\[
E(X) = \frac{2}{6} + \frac{4}{3} + 2 + \frac{10}{6}
\]

\[
E(X) = \frac{2 + 8 + 12 + 10}{6} = \frac{32}{6} = \frac{16}{3} \approx 5.33
\]

So, the mean \( E(X) = \frac{16}{3} \).

The variance \( \text{Var}(X) \) is calculated as:

\[
\text{Var}(X) = E(X^2) – [E(X)]^2
\]

First, we calculate \( E(X^2) \):

\[
E(X^2) = \sum_{i} x_i^2 \cdot p(x_i)
\]

\[
E(X^2) = 2^2 \cdot \frac{1}{6} + 4^2 \cdot \frac{1}{3} + 6^2 \cdot \frac{1}{3} + 10^2 \cdot \frac{1}{6}
\]

\[
E(X^2) = \frac{4}{6} + \frac{16}{3} + \frac{36}{6} + \frac{100}{6}
\]

\[
E(X^2) = \frac{4 + 32 + 72 + 100}{6} = \frac{208}{6} \approx 34.67
\]

Now, calculate the variance:

\[
\text{Var}(X) = 34.67 – \left(\frac{16}{3}\right)^2 = 34.67 – \frac{256}{9} \approx 6.222
\]

So, the variance \( \text{Var}(X) \approx 6.222 \).

Question 3: Calculate \( E\left((X – 3)^2\right) \).

We calculate this as:

\[
E\left((X – 3)^2\right) = \sum_{i} (x_i – 3)^2 \cdot p(x_i)
\]

Substituting the values:

\[
E\left((X – 3)^2\right) = (2 – 3)^2 \cdot \frac{1}{6} + (4 – 3)^2 \cdot \frac{1}{3} + (6 – 3)^2 \cdot \frac{1}{3} + (10 – 3)^2 \cdot \frac{1}{6}
\]

\[
E\left((X – 3)^2\right) = (-1)^2 \cdot \frac{1}{6} + 1^2 \cdot \frac{1}{3} + 3^2 \cdot \frac{1}{3} + 7^2 \cdot \frac{1}{6}
\]

\[
E\left((X – 3)^2\right) = \frac{1}{6} + \frac{1}{3} + 9 \cdot \frac{1}{3} + \frac{49}{6}
\]

\[
E\left((X – 3)^2\right) = \frac{1 + 2 + 18 + 49}{6} = \frac{70}{6} \approx 11.67
\]

So, \( E\left((X – 3)^2\right) \approx 11.67 \).

Summary of Answers

1. \( P(4 \leq X < 10) = \frac{2}{3} \)
2. \( E(X) = \frac{16}{3} \approx 5.33 \) and \( \text{Var}(X) \approx 6.222 \)
3. \( E\left((X – 3)^2\right) \approx 11.67 \)

Related Posts

Leave a Comment